首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
地球物理   23篇
地质学   74篇
海洋学   7篇
天文学   1篇
综合类   1篇
自然地理   16篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   10篇
  2008年   12篇
  2007年   6篇
  2006年   10篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1995年   3篇
  1991年   1篇
  1987年   1篇
  1977年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
71.
Sentinel‐2 images were used for mapping debris‐free glaciers for the first time in Cordillera Blanca. Landsat‐8 and Sentinel‐2 data were compared for glacier area estimation in 2016, obtaining comparable results. It was observed that normalized difference snow index method for glacier mapping using MSI data is less sensitive to cast shadows and steep terrain compared with Landsat data. Estimated total glacier areas in 1975, 1994, and 2016 were 726 ± 20.3 km2, 576.9 ± 15.1 km2 and 482.8 ± 7.4 km2, respectively. Glacier area in 2016 using Landsat was slightly lower (475.7 ± 16.8 km2) compared to the area estimated using MSI data. Observed glacier shrinkage between 1975 and 2016 was 33.5 per cent, which is lower compared to observed glacier area loss in the eastern cordilleras of Peru. Glacier shrinkage was higher at northern and northeastern slopes (47.9 per cent and 48.1 per cent, respectively) compared to the south‐western slopes (11.1 per cent).  相似文献   
72.
Industry seismic reflection data spanning the Rocky Mountain Cordillera front ranges of northwest Montana were reprocessed and interpreted in this study. Five seismic profiles represent 160 km of deep reflection data collected in 1983 that span the eastern Purcell anticlinorium, Rocky Mountain Trench (RMT), Rocky Mountain Basal Décollement (RMBD), and Lewis thrust. The data were reprocessed using modern techniques including refraction statics, pre-stack time migration (PSTM), and pre- and post-stack depth migration. Results indicate the RMBD is 8–13 km below the Earth's surface and dip 3–10° west. Evidence for the autochthonous Mesoproterozoic Belt and basal Cambrian rocks beneath the RMBD is present in all of the profiles and appears to extend east of the RMT. The Lewis thrust was identified in the seismic profiles and appears to sole into the RMBD east of the RMT. The RMT fault system has a dip displacement of 3–4 km and forms a half graben filled with 1 km of unconsolidated Tertiary sedimentary deposits. The RMT and adjacent Flathead fault systems are interpreted to be structurally linked and may represent a synthetic, en echelon fault system.  相似文献   
73.
The Upper Barremian to Aptian Almadich Formation (Inner Prebetic Domain of the Betic Cordillera) is composed of hemipelagic sediments deposited on a distal carbonate ramp in the southern Iberian Palaeomargin. Within this facies we have found a thick interval of blue to black shales and marls that is interpreted as deposited under oxygen-depleted conditions. We think that this interval, dated as early Aptian, represents the local record of Ocean Anoxic Event 1a. The integrated biostratigraphic analysis of a section in the Almadich Formation, by means of planktonic foraminifera, calcareous nannofossils and ammonites, enables us to recognize most of the biostratigraphic units based on these three fossil groups and to correlate between them. The Sartousiana, Sarasini, Weissi, Deshayesi and Furcata (ammonite) Zones were identified for the Upper Barremian–Lower Aptian interval. By means of calcareous nannofossil biostratigraphy the Micrantholithus hoschulzii, Hayesites irregularis and Rhagodiscus angustus Zones, plus several additional biohorizons, were identified. A quantitative study performed on a set of 27 Lower Aptian samples has enabled the precise identification of the ‘nannoconid crisis’, the lower limit of which clearly precedes the main anoxic event, and its correlation with other bioevents. Planktonic foraminifera occur consistently throughout the Lower to Upper Aptian of the Cau section and are moderately well preserved. This fact allows us to use the most recent taxonomic framework, based on wall texture, to identify the Blowiella blowi, Schackoina cabri, Globigerinelloides ferreolensis, Globigerinelloides algerianus, Hedbergella trocoidea andTicinella bejaouaensis Zones. Coincident with the anoxic episode, the planktonic foraminiferal assemblages are composed of a significant number of forms with elongated chambers and/or tubulospines assigned to the genera Claviblowiella,Lilliputianella , Leupoldina and Schackoina. Most of the planktonic foraminiferal and nannofossil taxa are illustrated.  相似文献   
74.
Catchment‐wide erosion rates were defined using 10Be terrestrial cosmogenic nuclides for the Eastern Cordillera of the Colombian Andes to help determine the nature of drainage development and landscape evolution. The Eastern Cordillera, characterized by a smooth axial plateau bordered by steep flanks, has a mean erosion rate of 11 ± 1 mm/ka across the plateau and 70 ± 10 mm/ka on its flanks, with local high rates >400 mm/ka. The erosional contrast between the plateau and its flanks was produced by the increase in the orogen regional slope, derived from the progressive shortening and thickening of the Eastern Cordillera. The erosion rates together with digital topographic analysis show that the drainage network is dynamic and confirms the view that drainage divides in the Eastern Cordillera are migrating towards the interior of the mountain belt resulting in progressive drainage reorganization from longitudinal to transverse‐dominated rivers and areal reduction of the Sabana de Bogotá plateau. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
75.
The mid‐Cretaceous Spences Bridge Group (SBG) comprises a series of basaltic to rhyolitic lavas and related volcaniclastic rocks (Pimainus Formation) overlain by a succession of mainly amygdaloidal andesites (Spius Formation) related to the closure of the Methow–Tyaughton basin and accretion of the Insular terrane in the North American Cordillera. Geochemical variation in the SBG is related primarily to metasomatic processes in the mantle wedge. Pimainus lavas include low‐ to high‐K, tholeiitic and calc‐alkaline types, and have isotopic compositions (εNd(100Ma) = + 5.2 to + 7.0, εSr(100Ma) = − 10 to − 20, 206Pb/204Pb = 18.82 to 18.91, 207Pb/204Pb = 15.55 to 15.60, 208Pb/204Pb = 38.24 to 38.43) between the ranges for primitive arcs and accreted terrane crust. Crustal sources are identified only for some low–medium K dacite and rhyolite compositions. The occurrence of intermediate compositions with high MgO contents (up to 6 wt%) and the presence of adakitic trace element features in medium–high K felsic lavas attests to metasomatism of the mantle wedge by slab melts during Pimainus volcanism. Spius lavas have comparable K2O and Pb isotopic compositions to the Pimainus, even higher MgO (up to 9.2 wt%), and display a mild intraplate character in having up to 0.6 wt% P2O5, 15 ppm Nb, and 240 ppm Zr. Spius Nd−Sr isotopic compositions (εNd(100Ma) = + 5.3 to + 6.9, εSr(100Ma) = − 14 to − 25) define an array extending from Pimainus to alkaline seamount compositions. The low εSr values, elevated high field strength element contents, and moderate silica contents suggest Spius volcanism was related to the introduction of small melt fractions from the asthenosphere into the mantle wedge which had previously generated Pimainus melts. The range of compositional types in the Pimainus Formation constrains tectonic scenarios to include an elevated slab thermal regime, likely from approach of an ocean ridge system toward the continental margin. Spius volcanism may have been generated by asthenospheric upwelling triggered by slab window development or slab‐hinge roll‐back on closure of the Methow–Tyaughton basin. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
76.
The decisive influence of Late Quaternary sea level changes on the geological evolution of the coastal plain and adjacent continental shelf around the world has long been recognized. Coastal environments evolve actively during transgressive–regressive cycles whose development depends on sea level and sediment supply variations. The interaction of these variables was key to the current morphological and sedimentological configuration of coastal regions. Particularly, the estuarine system of Bahía Blanca (Argentina) presents various types of deposits and marine fossil accumulations, such as paleochannels in the subbottom, sand-shell ridges and extensive layers with fossils in life position. These features are important geological indicators, because its analysis allows us to define different paleoenvironmental conditions that prevailed during the coastal evolutionary process.  相似文献   
77.
We use field and microstructural observations, coupled to previously published P-T-time histories, to track the rheological evolution of an intracontinental subduction complex exposed in the Betic Cordillera in the western Mediterranean region. The body of rock we focus on, known as the Nevado-Filabride Complex (NFC), was originally part of the upper crust of the Iberian margin. It was subducted into hot asthenospheric mantle, then exhumed back toward the surface in two stages: an early stage of fast exhumation along the top of the subducting slab in a subduction channel, and a late stage of slower exhumation resulting from capture by a low-angle detachment fault rooted at the brittle-ductile transition. Each stage of deformation in the NFC was punctuated by changes in the dominant deformation mechanism. Deformation during initial subduction of the complex was accommodated by pressure-solution creep in the presence of a fluid phase – the grain sizes, stress magnitudes, and estimated strain rates for this stage are most consistent with a thin-film model for pressure solution in which the diffusion length scale is controlled by the grain size. During the early stages of exhumation within the subduction channel, deformation transitioned from pressure solution to dislocation creep due to increases in temperature, which resulted in increases in both water fugacity and grain size, each of which favor the dislocation creep mechanism. Differential stress magnitudes for this stage were ∼10 MPa, and are consistent with simple models of buoyancy-driven channel flow. With continuing subduction-channel exhumation, deformation remained within the dislocation creep field because sequestration of free water into hydrous, retrogressive minerals suppressed the pressure-solution mechanism. Differential stresses progressively increased to ∼100 MPa near the mouth of the channel during cooling as the rocks moved into mid-crustal levels. During the final, core-complex stage of exhumation, deformation was progressively concentrated into a narrow zone of highly localized strain beneath a mid-crustal detachment fault. Localization was promoted by a transition from dislocation creep to dislocation-creep-accommodated grain boundary sliding at temperatures of ∼350–380 °C, grain sizes of ∼4 μm and differential stress magnitudes of ∼200 MPa. Peak differential stress magnitudes of ∼200 MPa recorded just below the brittle-ductile transition are consistent with Byerlee's law in the upper crust assuming a vertical maximum principal stress and near-hydrostatic pore fluid pressures. Overall, the distribution of stress with temperature, coupled to independent constraints on strain rate from field observations and geochronology, indicate that the naturally calibrated Hirth et al. (2001) flow law for wet quartzite accurately predicts the rheological behavior of mid-crustal rocks deforming by dislocation creep.  相似文献   
78.
Abstract

In western Nevada, the Black Dyke Formation includes volcanic rocks overlain conformably by volcaniclastic sediments. At the base, hornblende-phyric basalts with cognate hornblende-bearing gabbroic cumulates are interbedded with tuffs and pyroclastic breccia. Amphiboles give 40Ar/39Ar ages of 276 Ma. Clinopyroxene-phyric pillow basalts and plagioclase-phyric andesitic lava flows are present higher in the section. Facies changes between exposures reflect development near volcanic centers.

According to our investigations, the Black Dyke Formation is involved in east–west-trending folds overturned toward the south, and overlain unconformably by the Mesozoic Dunlap Formation, which unconformably overlies the Mississippian–Permian Mina Formation. Interpreted until now as tectonic slices within the Luning allochthon, we suggest that the Black Dyke Formation is part of the Sonoma allochthon associated with the Mina Formation. The Sonoma records closure of the Havallah basin (Golconda allochthon), and collision of an arc- trench system with the North American margin.

The Black Dyke Formation exhibits similarities with the Permian arc sequence of the northern Sierra Nevada. Both sequences are characterized by amphibole-bearing breccias, clinopyroxene-phyric pillow-basalts, plagioclase-phyric andesites and overlying volcaniclastic sediments. These sequences developed in the same geodynamic environment (an island- arc). © Elsevier, Paris  相似文献   
79.
80.
Over the last 33 years,a network of climate stations has been set up at high altitude mountain permafrost sites from Plateau Mountain near Claresholm,Alberta,north to Sheldon Lake on the North Canol Road in the Yukon.Taken together with the data from the US National Weather Service and the Canadian Atmospheric Environment Service,the results indicate a cooling of mean annual air temperature south of Calgary,no significant change in Calgary,a slight warming at Jasper,and a major warming at Summit Lake,west of Fort Nelson.In contrast,the south eastern and central Yukon show only a minor warming trend that lies well within the limits of a sixty-year record measured by the Canadian Atmospheric Environment Service.Along the Mackenzie valley and on the North Slope of Alaska,the mean annual air temperature is rising.Permafrost is aggrading on Plateau Mountain,degrading at Summit Lake,and appears to be stable in southern Yukon and southern Alaska.This is in contrast to the warming occurring on the Arctic coastal plain and along the Mackenzie valley.It therefore appears that changes in climate vary considera-bly from place to place,and even where warming may occur,it may not continue indefinitely.There has been a northward shift of the arctic front due to a weakening of air pressure in the Yukon and Alaska relative to the continental tropical(cT) and maritime polar(mT) air masses to the south.Any actual changes that may be occurring appear to undergo amplification along the Mackenzie valley and Arctic coastal plain and reduction by buffering in the interior Yukon and Alaskan mountains,a result of mi-cro-environmental factors.Continued,careful monitoring of the climate is required and needs to be expanded in the National Parks in the mountains in order to provide data on the changes that may be taking place.Such measurements can provide a sound basis for interpreting ecological and other climate-related data.The existing climate models are not working satisfactorily because we do not know enough about the causes and proce  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号